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Abstract. The excitation by a high-frequency field of multi-level quantum systems with a
slowly varying density of states is investigated. This class of systems includes hydrogen-like
atoms, surface electrons in metals, charge bubbles in liquid helium and other bound systems. It
is found that the excitation takes place through a ladder of sharp quasi-resonances, whose shape
is universal, namely independent of the driving-field parameters and of the details of the system.
The amplitudes of these peaks satisfy a system-dependent tight-binding equation in energy space.
Two classes of examples are considered in detail: for a particle in a positive power-law potential
well, the amplitudes exhibit a local crossover in energy between a regime of exponential decay
and an asymptotic power-law tail, which depends on the field parameters. For a negative
power-law potential well, exponential localization, similar to the Anderson localization in a
finite lattice, is found. The localization length depends on the field parameters as well as on
the specific power of the potential well. The two classes contain, as special cases, the ‘bubble’
model and the one-dimensional hydrogen atom; previous results are confirmed for these cases,
and new results are presented.

1. Introduction

The excitation of multi-level quantum systems by external fields, is a fundamental problem in
quantum mechanics. Any interaction between matter and electromagnetic fields is described,
on the simplest level, by such a model. Given the system at some initial condition, one
would like to characterize its energy absorption from the external field as a function of
time. An exact solution to this problem, which takes into account a large number of
quantum levels, is known only for a linear system, for which the Hamiltonian is quadratic
in momentum and coordinate [1]. Standard methods for nonlinear systems are limited:
perturbation theory, leading for example to the Fermi golden rule, holds only for very short
times, and a two-level approximation (associated with the Rabi width) is invalid in the
high-frequency regime, where many levels are nearly resonant.

In some cases, simple quantum systems can be described by one degree of freedom
[2, 3]. Much of the study of one-dimensional driven systems has been carried out in recent
years in the field of ‘quantum chaos’ [4, 5]. In this field, one is looking for the manifestation
of classical chaos in the quantum dynamics, and more generally for the relation between
classical and quantum mechanics in the presence of chaos [6, 7]. One-dimensional driven
systems provide some of the simplest examples of chaotic dynamics. However, in general,
they are mixed systems, namely they are chaotic in some regions of phase space and regular
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in others. While much progress has been made in the study of completely chaotic systems,
the behaviour of mixed systems is still to a large extent an open problem.

The driven system which has been most widely studied in quantum chaos is the kicked
rotor [8, 9]. This is a rigid planar rotor with an electric dipole, driven by a periodic train
of pulses. For many years this was considered a pedagogical but non-physical example;
however, recently an atomic system has been devised which interacts with laser fields,
and which is described by the model Hamiltonian of the kicked rotor in some regimes
of parameters [10, 11]. While classically the rotor absorbs energy from the field pulses
indefinitely (in absence of friction), its quantum mechanical analogue absorbs energy only
for a finite time and then saturates. This phenomenon, known as dynamical localization, is
a result of interference effects in energy space, similar to Anderson localization on a one-
dimensional random lattice, where a particle which diffuses classically localizes quantum-
mechanically [12]. This analogy provides much of the present understanding of driven
nonlinear systems. For the kicked rotor, the mapping to the Anderson model relies on the
special spectral properties of the rotor (En ∝ n2), and on the sharp pulses of the driving
field [8, 9].

In this work, we consider a class of driven systems which are different from the kicked
rotor. This class is characterized by an unperturbed spectrum with a slowly varying density
of states. Thus, a model with constant energy spacing in good approximation on some energy
scale, and the deviations of the spectrum from harmonicity appear as an adiabatic change
of this spacing as a function of energy. This slow dependence of the energy on quantum
number also allows us to write the one period propagator as a product of a free propagator,
that depends only on the action variable, and a ‘kick-like’ part that is weakly dependent
on action. This ‘adiabatic nonlinearity’ of the spectrum is characteristic of many one-
dimensional systems, of which several examples are the hydrogen-like atom, charge bubbles
in liquid helium and surface electrons in a two-dimensional metal with a perpendicular
magnetic field [13]. The last two examples have been described by the ‘bubble’ model
[14–16]. The excitation of Rydberg atoms by microwave fields has been the subject of
much study, both experimentally and theoretically [17–20]. This work presents a general
framework for this class of systems, from which some new results emerge and some known
results for special cases are confirmed.

We focus on the excitation of this class of systems by a monochromatic field, which is
of high frequency compared to the typical frequencies of the system. This is always the
situation for systems discussed in this work, for sufficiently high energy, since the density
of states increases with energy. Thus, many unperturbed levels participate in the excitation
(it is important, however, that the spectrum is discrete for our solution to hold). The basic
idea employed in this work, is to solve the problem in a limited energy regime, where the
locally defined energy spacing can be considered constant. The solution to the local problem
relies on an exact solution of an integrable system. Then, we account for the large energy
scales by exploiting the adiabatic dependence of parameters on energy. A similar idea was
previously applied to the bubble model [21] using the special features of this system. In
this work, the method is extended and the results are obtained under general conditions.

We study the excitation of the system by investigating its quasi-energy eigenstates,
which are the stationary states of the periodic time-dependent problem [22, 23]. The exact
eigenstates determine the quantum dynamics on all time scales, and finding them is as
difficult as solving exactly the time-dependent Schrödinger equation. The advantage of
this method is that sometimes one can characterize the eigenstates by general qualitative
properties, from which qualitative properties of the dynamics may be deduced. This idea is
inspired by the kicked-rotor analogy, where a robust qualitative feature of the quasi-energy



High-frequency excitation of quantum systems 7201

states—namely their exponential localization in energy space—explains the saturation in
energy absorption. In the class of systems considered here, we find properties of the
eigenstates on several energy scales. On the smallest scale, we find that, under quite general
conditions, these states are composed of a ladder of sharp peaks, or ‘quasi-resonances’ (QR).
These are related to quantum nearly resonant transitions between the energies of the undriven
system and should be distinguished from the classical resonances. While the existence of
such peaks is well known [24], here they are derived from the local non-perturbative solution,
which enables the quantitative description of their location and shape. Surprisingly, the QR’s
turn out to have a universal shape, independent of field parameters and of the details of the
system. In particular, their width is independent of the driving field strength. These general
results are presented in some detail in section 2. On a larger energy scale, our quantitative
description of the local structure allows us to employ a method suggested by de Oliveira
et al [16] for the study of the envelope of the eigenstates. The results of the local solution
are used explicitly to construct a tight-binding equation for the amplitudes superimposed
on the QR peaks. The parameters of this equation are non-universal and are related to
the spectrum of the unperturbed system and to the matrix elements of the perturbation. In
sections 3 and 4, the details of this equation for two examples are presented. The model
consists of a particle in a potential wellV (x) = xσ , x > 0, driven periodically by a dipole
electric field. In section 3, we consider the case of 0< σ < 2, of which the bubble model
is a special case (σ = 1). We find that the envelope of the eigenstates exhibits a crossover
from a localized to a more extended regime as a function of energy, and that their asymptotic
tails have a power-law decay with a power which scales with the external field parameters.
The scaling is independent ofσ , and a crossover of the tail from normalizable to non-
normalizable is found as a function of the external-field strength. This is a generalization
of the result known for the bubble model [15, 16, 21]. In section 4 the case of−2< σ < 0
is considered, of which the one-dimensional hydrogen atom (σ = −1) is a special case.
Here, the potential well is singular at the origin, and this singularity is reflected in the
equation for the amplitudes. In a certain energy range, the amplitudes are found to satisfy
an Anderson-like model on a finite lattice. The scaling of the localization length with the
field parameters depends on the powerσ , and for the hydrogen atom the scaling found from
the Kepler map is confirmed [25]. Section 5 is a summary and discussion of the results.

The method suggested here is general, and does not depend on peculiar features of a
specific system. The local structure is universal for systems with an ‘adiabatically nonlinear’
spectrum; more precise conditions are given in section 2. The global structure depends on
basic characteristics of the system, such as the analytic properties of the binding potential
and the asymptotic behaviour of the matrix elements. The application of these results to
similar systems which are not specifically discussed here, is therefore straightforward.

2. Local structure: quasi-resonances

In this section we show that for a wide class of smooth binding potentials, a bound particle
driven by a high-frequency monochromatic force, exhibits a peak structure in energy in
the quasi-energy eigenstates. These peaks, known as ‘photon states’ or QR, are related to
one-photon excitation, and are thus separated by a distance of ¯h� in energy, where� is the
driving frequency. The existence of approximate selection rules in the long-time transition
amplitudes has been shown by Leopold and Richards [24]. In numerical calculations, sharp
peaks have been observed for several systems in the quasi-energy states [14], in the long-
time evolution [25] and in the spectrum of emitted radiation [26]. Here we calculate the
precise form of the QR’s and formulate the conditions on the potential and on the driving
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field for which these results are valid.
Consider the following one-dimensional Hamiltonian in action-angle variables(I, θ):

H = H0(I )+ kV (I)g(θ) cos(�t). (2.1)

It is assumed thatH0(I ) andV (I) are smooth functions ofI .
The Hamiltonian (2.1) is strictly time-periodic with a period ofT = 2π/�. Therefore,

there is a set of good quantum numbers, the quasi-energies, associated with the stationary
states of the system known as the quasi-energy states [22, 23]. These are the eigenphases
and eigenstates of the Floquet operator, which is the evolution operator for one period. Thus
we seek to solve the following eigenvalue equation:

Û |ψλ〉 = e−iλT |ψλ〉 (2.2)

whereÛ is the Floquet operator andλ is the quasi-energy. Note that the quasi-energies are
only defined by their residue modulo�. By convention, for a free system with levelsEn
the quasi-energies areEn/h̄mod�, so that in effect the spectrum is folded modulo ¯h�.

It will be convenient to work in the basis of the eigenstates ofH0, which form a discrete
non-degenerate spectrum labelled by the quantum numbern:

H0|n〉 = En|n〉. (2.3)

The matrix elements of the Floquet operator in this basis will be calculated semiclassically.
In the high-frequency regime (ω(I) � �, whereω(I) = ∂H0/∂I ), it is natural to introduce
the small parameterε = ω(I)/�. For the problems discussed in the present work,ω → 0
in the limit I → ∞, so thatε is small in the region of high energy. Since the time scale
relevant for quantum mechanics (the field period) is relatively short in this regime, the
semiclassical approximation is expected to be very good and will be used throughout this
paper. This does not imply, however, that the resulting properties of the system for high
frequencies resemble those of the classical system better than the ones found for relatively
low frequencies.

In this approximation

Un,n′ =
∑
ν

Aνe
i
h̄
Sν (n

′,n;T ) (2.4)

where the sum extends over the classical trajectoriesν connecting the actionnh̄ to the action
n′h̄ via a classical trajectory of timeT . The trajectories differ from one another by the initial
value of the unspecified variable,θ . The actionSν(n′, n) is the generating function of the
canonical transformation of time evolution along theνth classical trajectory; the amplitudes
Aν are related to second derivatives of this action and incorporate some phase factors. An
alternative way to express the semiclassical propagator is through an integral over initial
values ofθ . In this representation, the integrand is constructed such that the stationary
phase approximation to the integral equals the sum (2.4). A precise derivation of this
so-called ‘initial value representation’ is given by Levit and Smilansky [27]. They show
that this representation is formally equivalent to the semiclassical approximation, which is
the leading order in ¯h of the Feynman path integral. We employ a further approximation,
namely we do not use the exact classical trajectories but only approximate ones. We assume
that the actionnh̄ does not change much during the integration timeT ; this is justified if
the perturbing field is very small(k � 1), or alternatively if the integration time is very
short compared to the natural period of the undriven system. Under these conditions, one
may approximate the solution ofθ(t) by θ+ω(I)t whereI is taken as some constant value
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betweennh̄ andn′h̄. For some models to be discussed in the next section this is formally
a leading-order approximation in the high-frequency regime. The result is [28]

Un,n′ = e−i T
h̄
H0(nh̄)

1

2π

∫ 2π

0
ei(n−n′)θ− i

h̄
A(I,θ) dθ (2.5)

where the functionA(I, θ) is defined by

A(I, θ) = k

∫ T

0
V (I (t))g(θ(t)) cos(�t) dt (2.6)

which reduces to

A(I, θ) = k

∫ T

0
V (I)g(θ + ω(I)t) cos(�t) dt (2.7)

if the approximationI = constant,θ(t) = θ + ωt is used. This is always a leading order
in the field strengthk, and for the specific cases discussed in sections 3 and 4 it is also
a leading order in the high-frequency limit (see appendix C). It is easily verified that the
stationary points of this integral correspond to classical trajectories relating the actionnh̄ to
n′h̄ at timeT . This approximation is sometimes called the ‘strong coupling correspondence
principle’ (SCCP) [29].

An approximation for A(I, θ) in the high-frequency regime was developed in
appendix A leading to:

A(I ; θ) =


0 0< θ < 2π(1 − ε)

2π

ω
kV (I)gm+ cos

[
2π − θ

ε

]
2π(1 − ε) < θ < 2π

(2.8)

where gm are the Fourier coefficients ofg(θ), andm+ is the positive integer closest to
1/ε. It corresponds to the classical resonance, where 1/ε = �/ω(I) = m+, which is an
integer. (This is unrelated to the quasiresonances, which are of pure quantum origin.) It
is shown in appendix A that the Fourier series ofA(θ) is dominated by a few components
near the resonant one with indexm+, and the approximation (2.8) reproduces correctly these
components. It is in general discontinuous and does not satisfy the continuity properties
of the exact function, therefore it does not reproduce correctly the very high components.
However, it is derived for a general function with coefficientsgm, that are smooth inm.
Knowledge of the asymptotic properties of these coefficients in the largem limit can be
used to restore the correct analytic properties ofA(I ; θ) and better approximations can be
developed for specific models (see appendix A). Note that the more naı̈ve approximation of
keeping only the resonant term, or even a finite number of terms, always gives rise to an
analytic function.

Semiclassically, the expression for the matrix element (2.5) can be interpreted as the
product of two operators: a phase operator (diagonal in the|n〉 representation), and the
operator e−

i
h̄
A(I ;θ). Adiabaticity as a function ofI implies that the latter effectively depends

only on θ and the matrix element is just the(n−n′) Fourier component. The assumption
is that V (I) depends weakly onI and changes little in the regionI ∈ [nh̄, n′h̄]. This
assumption is commonly made (see, e.g. [30]). The product form can be derived also
directly from the eigenvalue equation [21]:∑

n′
Un,n′ψn′ = e−iλT ψn (2.9)



7204 N Brenner and S Fishman

whereψn = 〈n|ψλ〉 (explicit dependence of some quantities onλ is suppressed in what
follows). It is convenient to introduce the translation operator in action space, eiθ̂ , defined
by eiθ̂ψn = ψn+1. With the help of this operator the equation can be written as

∞∑
r=−∞

Un,n+reiθ̂ rψn = e−iλT ψn (2.10)

wherer = n′ − n. This is a good approximation in the regime of largen, since then the
extension of the sum from(−n) to (−∞) does not introduce a large error. Substituting the
expression (2.5) for the matrix elements, the equation is

e−i T
h̄
H0(nh̄)

1

2π

∑
r

∫ 2π

0
dθ e−irθ− i

h̄
A(I,θ)eiθ̂ rψn = e−iλT ψn. (2.11)

The idea is now to effectively separate the dependence of the elements in this equation on
n from their dependence onr. The matrix elements are assumed here to vary slowly as
a function of line numbern, and fast as a function ofr = n′ − n. Thus we taken to be
constant, and the translation operator isθ̂ conjugate tor. The operators (n andθ ) may be
commuted under this approximation, and the left-hand side of the equation may be summed
to yield

e−i T
h̄
H0(nh̄)e− i

h̄
A(I ;θ̂ )|ψλ〉 = e−iλT |ψλ〉 (2.12)

which is the same product of two operators. A simple intuitive explanation for this form is
found from (2.8): the derivative(∂A/∂θ) represents the change in action during one period.
Thus in our approximation most of the action transfer takes place in a limited region ofθ .
We will later consider two specific models of potentials in the half spacex > 0; for these,
over most of the particle’s trajectory the potential is so smooth that the external field has
very slittle effect other than modulating the dynamical variables. Near the pointx = 0,
the singularity of the potential induces transitions between differentn states, and therefore
the system is effectively ‘kicked’ at these points. This strong dependence on the angleθ

enters through the functionA(I, θ). This has been the basis for the construction of the
classical Kepler map for the driven hydrogen atom [31, 25], and the similar impact map
for the bubble model [15]. Note, however, that (2.12) is the approximate propagator for an
external-field period and not an orbital period of the particle. Since the Kepler-type maps
are constructed for an orbital period, which depends on energy and is not the natural period
of the problem from a quantum-mechanical point of view, their quantization is not obvious
[17].

SinceH0(nh̄) varies slowly as a function ofn, it can be expanded around a large value
n0 to first order inl ≡ n− n0:

H0(nh̄) ' H0(n0h̄)+ ωlh̄ (2.13)

whereh̄ω = (∂H0/∂n)|n=n0. This effectively results in the expansion of the first operator
in (2.12) to first order in(n − n0) (this is the first meaningful order in the expansion
of the unperturbed Hamiltonian), and the second operator to zeroth order. The resulting
eigenvalue equation appears as the equation for a ‘linear kicked rotor’ [32, 33], i.e. a rotor
with an unperturbed harmonic spectrum, kicked at regular time intervals by aθ -dependent
potential:

eiωlT e−i i
h̄
A(n0h̄,θ)|ψ〉 = e−i(λ−λ0)T |ψ〉 (2.14)

whereλ0 = H0(n0h̄)/h̄. The quasi-energies of the linearized model areλlin ≡ (λ−λ0) and
the kicking potential is given by the functionA. The linear kicked rotor is an integrable,
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exactly solvable system: closed expressions can be found for the eigenvalue spectrum and
the corresponding eigenstates [32, 33]. For this solution, it is convenient to express the
kicking function in Fourier representation:A(I, θ) = ∑

m Am(I)e
imθ . One finds that, for

1/ε non-integer,

Am(I) = kV (I)

iω

mgm

m2 − 1/ε2
(eim2πε − 1). (2.15)

The quasi-energy eigenstates can be written as|ψ〉 = e−iλt |u〉, where |u〉 is a periodic
function of time with periodT . The exact functions for the linear kicked rotor are given
by 〈θ |u〉 = eiφ(θ), with

φ(θ) = µθ + 1

h̄

∑
m6=0

Am(n0h̄)

(e−i2πmε − 1)
eimθ . (2.16)

The quantum numberµ, characterizing the state, is related to the quasi-energyλ via

λlinT ≡ µωT (mod 2π). (2.17)

In our case, substituting the Fourier components (2.15) to the general solution (2.16) yields

φ(θ) = µθ − k

ih̄ω
V (n0h̄)

∑
m6=0

m m

m2 − 1/ε2
eim(θ+2πε). (2.18)

This sum is calculated in appendix A. For symmetric coefficientsgm, (see (A.5))

φ(θ) = µθ − π

h̄ω
kV (noh̄)πgm+

sin
[
π−{θ+2πε}

ε

]
sin(π/ε)

(2.19)

where{x} denotes the residue ofx modulo 2π . With (2.19) we may write the explicit form
of the solution to (2.14) in the action representation, as a function ofl ≡ (n− n0):

〈l|u〉 = eiϕ
∞∑

m=−∞
Jm(B) sinc[π(µ− l +m/ε)] (2.20)

with the following definitions:

ϕ = π(µ− l)(1 − 2ε)

B = π

h̄ω
kV (n0h̄)gm+/ sin(π/ε)

(2.21)

and sinc(x) = sin(x)/x. In the high-frequency limit,ε � 1, the function (2.20) is composed
of a chain of peaks separated by approximately the energy of one photon, each weighted by
an amplitude. Assuming that at each point tails of sinc functions centred far-away contribute
incoherently, the absolute value of the wavefunction is large on this ladder of QR’s. For an
eigenstate corresponding to a quasi-energyλlin, the QR’s are located at valueslj satisfying

π(µ− lj +m/ε) = πδj (2.22)

with |δj | < 1
2, andµ related toλlin through (2.17). The positions of the peakslj at this

wavefunction are expressed in terms ofλlin as

Elj = lj h̄ω = λlinh̄+ jh̄�− h̄ωδj . (2.23)

Thus, the quasi-energyλlin sets the origin of the QR ladder, and the peaks are located
at approximately the equally spaced energiesjh̄�, with a mismatch ¯hωδj . The QR’s are
labelled byj , their position on this ladder. Figure 1 shows a graphic representation of the
quantitieslj and δj which appear in (2.23): on an underlying lattice of spacing ¯hω (the
linearized unperturbed spectrum), is placed an incommensurate lattice of spacing ¯h� (the
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photonic exact resonances). The origin of placing the photonic lattice is determined by the
quasi-energyλ. Since the system has a discrete spectrum, it cannot be excited to an exact
resonance but only to the closest available quantum state; this islj , which is the peak of the
QR. The detuning at thej th peak is the mismatch between lattices,δj , which determines
the exact shape of the QR.

Figure 1. A graphic representation of (2.22) The ladder of exact resonances, with spacing ¯h�,
is placed on top of the ladder of unperturbed levels with a local spacing ¯hω. The locationlj
and the detuningδj determine the properties of thej th peak, see (2.23).

Thus the sinc function around thej th QR can be written as

Qj(l) = sin[π(l − lj + δj )]

π(l − lj + δj )
. (2.24)

These functions form a non-orthogonal basis that is probably complete. For a given quasi-
energy (2.23) implies that the corresponding eigenstate is composed of only a fraction of
these. Note that the width of the QR is independent of the driving-field strength and of the
density of unperturbed states. This is in contrast to the width associated with the transition
rate given by Fermi’s golden rule, and also in contrast to the Rabi width, both of which
are invalid approximations in our regime of parameters. As will be shown in what follows,
this property of the QR width is satisfied also by the eigenstates of the nonlinear problem.

The local linear solution provides an intuitive semiclassical understanding of the
phenomenon of the QR’s. As shown by Berry [34], the eigenstates of the linear kicked rotor
can be obtained by a semiclassical quantization along classical invariant curves in phase
space. The equation for such a curve is [34]

Iµ(θ) = µ− 1

2

∑
m6=0

mAm
eim(θ+πε)

sin(mπε)
. (2.25)

This curve is associated with a Floquet eigenstate corresponding to the quasi-energyλlin,
which is related toµ via (2.17). Using an approximation similar to that of appendix A, the
form of the curve is found to be

Iµ(θ) = µ+ kV (I)
πgm+

ωε

cos
[
π−{θ+2πε}

ε

]
sin(π/ε)

(2.26)

whereV (I) is almost constant in a large region. This curve exhibits details along theθ axis
on a scale ofε. Since by quantization we wash out structures on areas smaller than ¯h in
phase space, these details inθ can be reflected in the quantum eigenstates only at the cost of
details in then direction, namely by effectively sparsening the representation inn (see also
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Jensenet al [35]). In the nonlinear system there are no invariant curves; however, because
of the adiabatic change of parameters this still holds as an approximate local description.

On top of the QR structure, the state (2.20) has a typical widthW in n, determined by
the Bessel function:

W = πk

h̄ωε

V (I)gm+

sin(π/ε)
. (2.27)

This is just the width of the corresponding classical curve (2.26) in theI direction. Beyond
the region of allowed classical motion, the eigenstate decays in a way which depends on
the analytic properties ofA(θ) [33]. Thus, although the field strengthk does not influence
the shape of the QR, the width of the envelope as determined by the Bessel functions is
proportional tok. It will be shown in the next sections that the field strength also determines
the width of the envelope for the nonlinear system. If this envelope is power-law decaying,
the power depends onk; if it is exponentially localized, the localization length depends on
k.

Recall that the exact solutions we have found so far are relevant to the linearized model,
and are correct only off-resonance. We turn now to construct the eigenstates of the original
nonlinear system. There are two cases to be considered, depending on the strength of the
perturbation. If the perturbation is small, then off-resonance there exist invariant curves
in phase space which can be approximated by (2.26). In this case, we conjecture that
many eigenstates are bounded by such curves and can be approximated by eigenstates of
the linearized equation. Sinceε changes very slowly in phase space, neighbouring curves
have almost the same value ofε and the corresponding eigenstates are almost orthogonal.
Eigenstates corresponding to far away curves, for whichε is considerably different and
orthogonalization may be destroyed, do not overlap much spatially, and moreover they
are separated by regions whereε is resonant and our approximation breaks down. On
the other hand if the perturbation is large and the linear eigenstates are so wide that they
cover several resonances, then, in general, orthogonality between the linearized eigenstates
can be destroyed while the spatial overlap is considerably large. Then it is expected that
different regions can interact. Thus the two important length scales in phase space are
the distance between classical resonances and the width of the linearized wavefunction.
The ratio between these two scales determines the validity of a matching between different
linearized eigenstates. It can easily be checked that, for the two models discussed in the
next sections where the potential well is described by a power law, the condition for the
validity of the matching is the same as the Chirikov criterion for resonance overlap [36].
This implies that for these models, matching between different solutions of the linearized
problem is valid inside classically connected regions of phase space. Outside such regions,
decay of the eigenstates is expected on classical grounds.

We turn now to describe the matching procedure between the regions where the
linearization holds. The conditions for the validity of this procedure will be discussed
for various specific cases in the following sections. We approximate the state in the vicinity
of a given QR by the linear eigenstate with the local values ofω andλ0 and with the given
value ofλ, and match different linearization regions. Using the approximation

Enj ≈ En0 + (∂En/∂n)n0lj (2.28)

one finds that the quasi-resonances appear at values ofn = nj satisfying

Enj = λh̄+ jh̄�− (∂En/∂n)n0δj . (2.29)

The interpretation of this formula is similar to that of (2.23): the eigenvalueλ sets the
origin of the ladder for the corresponding eigenstate, and the QR’s are numbered by their
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Figure 2. Numerical verification of (2.29). An exact Floquet eigenstate for the special case
σ = 1 (open circles with full curve) is compared to a superposition of sinc shaped peaks
(2.29) with parametersnj andδj predicted by (2.28), and amplitudes fitted to the solution (full
triangles).

positionj on this ladder. Each is described approximately by the functionQj(n) of (2.24),
characterized by the peak positionnj and the detuning|δj | < 1

2, both satisfying (2.29). This
equation was obtained in a region where linearization holds aroundEn0. Now the centre of
linearization can be varied, resulting in a local relation betweenEnj , j andδj . The matching
of different linearized eigenstates may alter considerably the amplitudesAj , therefore we
write for the global eigenstate the following approximate form:

ψn =
∑
j

AjQj (n) =
∑
j

Aj
sin[π(n− nj + δj )]

π(n− nj + δj )
(2.30)

where the amplitudes are yet to be determined. A numerical calculation verifying this
approximation, with the analytically predicted values ofnj andδj for a specific system, is
shown in figure 2. It is clear that the locations and shapes of the peaks are well described
by this approximation.

Equation (2.30) together with (2.29) is the central result of this section. It is valid under
the general conditions, (i) the unperturbed spectrum is ‘adiabatically nonlinear’, and (ii)
the driving depends weakly onI and has smooth Fourier coefficients inθ . It implies that
for the nonlinear system, the Floquet eigenstates are composed of a chain of sinc-shaped
QR’s. As for the solution of the linear model, these QR’s are independent of the field
parameters, in contrast to perturbative results. An heuristic explanation of this phenomenon
can be given from semiclassical considerations. Since the transition between unperturbed
states take place primarily around the originθ = 0, the typical time scale associated with
these transition is the classical orbital period 2π/ω. Associating with this time scale an
energy width via the uncertainty principle, and taking into account the unperturbed density
of states, yields a constant width inn-space.

Equation (2.30) leaves open the determination of the amplitudesAj . In the next sections,
the information obtained here about the QR’s will be used to construct an equation for these
amplitudes inside a region where matching is valid, following an idea of de Oliveiraet al
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[16]. This construction is system specific, and depends on the unperturbed spectrum and
the matrix elements of the perturbation. It will be shown that, while the field parameters do
not influence the shape of the single QR, they govern the behaviour of the overall envelope
described by the amplitudesAj .

3. A model with a positive power potential

In this section, we consider a particular model, of a particle of massm in a one-dimensional
potential well with the shape of a positive power law, driven by a monochromatic electric
field via dipole interaction:

H(x, p) = p2

2m
+ bxσ + kx cos(�t) x > 0 (3.1)

where 0< σ < 2, andb > 0. The transformation to action-angle variables gives for the
undriven part

H0(I ) = CIα (3.2)

whereC is a constant; we may choose the units such thatC = 1/α. The powerα is given
by

α = 2σ

2 + σ
(3.3)

satisfying 0< α < 1. Therefore, in classical terms, the frequenciesω(I) = ∂H0/∂I satisfy
ω(I)I→∞ → 0. The rate of change of the classical frequency as a function ofI also tends
to zero in the same limit. When quantized, the energy levels of the unperturbed system are
a slowly varying function of the quantum numbern = I/h̄. At high energies, they may
be approximated byEn ≈ h̄ωn0(n − n0) with ωn0 = (n0h̄)

α−1, which is a slowly varying
function of n.

In order to express the full Hamiltonian in action-angle variables, one must write the
position variable as a function ofI and θ . As in the previous section, we make use of
the fact that the wavefunctions are dominated by the Fourier components in the vicinity of
the index closest to 1/ε. These are components of high frequency and consequently the
wavefunctions are dominated by the region of the singularity inθ . It is shown in appendix B
that semiclassically

x(I, θ) = I γ
∞∑
1

gm cos(mθ) (3.4)

where

γ = 2

2 + σ
gm ∼m→∞ C1/m

2. (3.5)

It is important to notice that12 < γ < 1, so that the driving also depends weakly onI . The
full Hamiltonian in action-angle variables is, therefore,

H(I, θ) = 1

α
Iα + kI γ g(θ) cos(�t) (3.6)

with α andγ defined by (3.3) and (3.5) respectively.
It was shown in the previous section, that the eigenstates of the Floquet operator are

composed of QR’s. We now discuss the regime of validity of (2.5), (2.7), called the SCCP,
which lead to this result. It holds in the semiclassical limit whenever the classical trajectory
can be approximated byI = constant,θ(t) = θ + ω(I)t ; thus, we now address the formal
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question under what conditions this is a good description of the classical dynamics, for times
of the order of the field period. One obvious condition is that the field is small enough;
it is a leading order solution ink, the field strength. Sometimes, however, it is a leading
order in a high-frequency expansion [21].

The dependence on the small high-frequency parameterε is apparent in a particularly
simple way, when writing the equations of motion in terms of the dynamical variablesε

andθ and the dimensionless timeτ = �t :
dε

dτ
= ε

2
2−σ F1(k,�)

(
dg

dθ

)
cos(τ ) (3.7)

dθ

dτ
= ε + ε

σ
2−σ F2(k,�)g(θ) cos(τ ). (3.8)

Sinceσ > 0, the time variation ofε is always slower than that ofθ in the limit ε → 0, and
therefore one can solve the equations in the Born–Oppenheimer approximation. The first
step in this approximation consists in solving the equation forθ assumingε is constant. If
σ > 1, the leading order solution isθ(τ ) = θ + ετ , and therefore the SCCP is formally a
leading order inε. For σ 6 1, although the oscillatory term is not of higher order inε, it
is argued in appendix C that only the linear term contributes to the calculation ofA(I, θ),
(2.6). Therefore, the SCCP is not only a leading order in the field strengthk, but also a
leading order in the small parameterε.

The asymptotic behaviour of the coefficientsgm (∼ C1/m
2) can be used to calculate

the functionA(I, θ) for this specific model more accurately than the general formula (2.8):

A(I ; θ) =


0 0< θ < 2π(1 − ε)

C12πk

�2
I

σ
σ+2

(
cos

[
2π − θ

ε

]
− 1

)
2π(1 − ε) < θ < 2π

(3.9)

(see appendix A). Together with (2.5), this is to be compared with (4.7) of [21]. One can
again solve the linearized model resulting in a solution of the form (2.20) with

B = kC1πI
σ

2+σ

h̄�2

1

sin(π/ε)
. (3.10)

The eigenstates of the Floquet operator in the unperturbed basis thus have the general form
(2.30) withnj andδj satisfying (2.29). The sequences of peak positionnj and detuningsδj
may be estimated using the approximation

λh̄+ jh̄ = Enj +
(
∂En

∂n

)
nj

δj ∼= E(nj + δj ) = 1

α
(h̄(nj + δj ))

α. (3.11)

Inverting this relation, one finds that

nj = int

{
1

h̄
[h̄α(λ+ j)]1/α

}
(3.12)

and

δj = frac

{
1

h̄
[h̄α(λ+ j)]1/α

}
. (3.13)

Since 1/α > 1, the sequence of neighbouring detuningsδj is a pseudorandom sequence
[37, 38]. Numerical verification of the form (2.30), withnj and δj given by (3.12) and
(3.13) respectively, was obtained for the special case of the bubble model (σ = 1) [21]. For
this case, since there are closed expressions for the dipole matrix elements, it is possible
to calculate the Floquet operator numerically to a high precision. In figure 2 a typical
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eigenstate of this operator (open circles with full curve) is compared to a function of the
form (2.30), with positions and detunings as calculated from (3.12) and (3.13), and arbitrary
amplitudes. The good agreement persists throughout the whole basis used (400n-states),
though at very low values ofn the agreement is less good. This is expected since in this
region the semiclassical approximation does not hold.

The next step is to consider the structure of the eigenstate on a scale of many QR’s. We
first note that there are two important scales inn-space, the distance between QR’s, (1/ε),
and the bandwidth of the Floquet operator, which is the bound on classical motion in one
period. This width may be estimated directly from Hamilton’s equation for the action:

dI

dt
= −kI γ g′(θ) cos�t. (3.14)

Denoting byM the bound on the derivativeg′(θ), one finds that∣∣∣∣dI

dt

∣∣∣∣ 6 kMIγ (3.15)

so that the semiclassical bandwidth for transitions is

1I 6 kMIγ2π/�. (3.16)

As argued by Richardset al [28], the quantum dynamics of the system is expected to be very
different depending on the ratio between these two scales. If the distance between QR’s is
larger than the bandwidth, the absorption of even one photon involves a classically forbidden
transition, and therefore if there are no special phase relations resulting in constructive
interference the excitation is expected to be very limited. If there are many QR’s inside one
bandwidth, the excitation is expected to be more efficient. In our model, both scales vary
as a function ofn, and a crossover is found from the former to the latter type of behaviour
as a function ofn. The crossover pointnc scales with the parameters as

nc ∝
(
�2

k

)(2+σ)/σ
. (3.17)

Thus, in general the wavefunctions are expected to be localized for small values ofn and
to crossover to a more extended behaviour atn > nc. This is a local effect, which is
easily traced in numerical computations of the wavefunctions. For the special caseσ = 1
(the bubble model), the semiclassical Floquet matrix was calculated and diagonalized. The
general structure described above was indeed verified, with the scaling (3.17) [21].

We now turn to investigate the long-range (n → ∞) characteristics of the eigenstates.
As explained in section 2, the condition for the validity of matching different regions where
the linear solution holds, is that the width of the linear solutions (B/ε) is larger than the
distance between classical resonances. For the model presented in this section we find this
condition to be:

k >

(
2 + σ

2 − σ

)
sin(π/ε)

πC1
I

2(σ−1)
2+σ . (3.18)

For typical non-resonant values ofI , where sin(π/ε) is of the order of 1, this inequality
differs from Chirikov’s criterion for resonance overlap [36] only by a constant. Therefore,
the matching procedure presented in section 2 is valid where the Chirikov criterion is
satisfied, namely in a classically connected region of phase space. It is seen that for
σ < 1 local solutions can always be matched for high enoughn, while for σ > 1 the
matched solution only holds in a limited region, beyond which a decay of classical origin is
expected. In a region where matching holds, we construct the equation for the amplitudes
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of the QR’s. The eigenvalue equation (2.2) can be equivalently written in an extended
Hilbert space of variables(n, j) of which |n, j〉 = |n〉e−ij�t are basis functions [39–41, 23].
The corresponding operator in this space is the Floquet Hamiltonian, and the eigenvalue
equation for it is

(En − h̄j�)φn,j + k

2

∑
n′

〈n|x̂|n′〉[φn′,j+1 + φn′,j−1] = h̄λφn,j (3.19)

whereφn,j = 〈n, j |φ〉 and the explicit dependence onλ was suppressed. Now using the
formula for the eigenstates (2.30), one may approximate [21]

φn,j ≈ AjQj(n) (3.20)

and write the following equation for the amplitudes of the eigenstate associated withλ:

−Ajh̄δjωsin(πδj )

πδj
+ k

2

∑
n′

〈nj |x̂|n′〉[Aj+1Qj+1(n
′)+ Aj−1Qj−1(n

′)] ≈ 0. (3.21)

The dependence onλ enters through the functionsQj(n) andδj , see (2.24), (3.12), (3.13).
This construction follows an idea of de Oliveiraet al [16], for details see [21]. It results in
a one-dimensional tight-binding equation for the amplitudes. The ‘diagonal potential’ is a
function of the detuningδj at thej th QR; these are given by (3.13) and constitute a pseudo-
random sequence. The hopping between QR’s is given by the dipole matrix elements. It is
shown in appendix B that, semiclassically,

〈n|x̂|n′〉 ≈ (nh̄)χC1

ω2(n− n′)2
≈ (nh̄)χC1h̄

2

(En − En′)2
(3.22)

whereχ = 2(σ − 1)/(σ + 2). The main contribution to the two sums overn′ in (3.21) is
from the vicinity of the neighbouring QR’s,(j + 1) and (j − 1). It is assumed, as usual,
that ω is a slowly varying function ofn, so it is well defined in the region ofn and n′.
Using the approximation

Enj − En′ ≈ −h̄�− (n′ − nj+1)ωh̄ n′ ≈ nj+1

Enj − En′ ≈ h̄�− (n′ − nj−1)ωh̄ n′ ≈ nj−1
(3.23)

the sums in (3.21) can be written in the following form:∑
n′

〈nj |x̂|n′〉Qj+1(n
′) ≈ C1(nh̄)

χ

�2

∑
n′

Ql+1(n
′)

[1 − (nj+1 − n′)ε]2
. (3.24)

It is shown in appendix F that for any smooth functionF (which can be expanded in a
Laurent series),∑

M

F(M) sinc[π(M + δ)] = F(−δ). (3.25)

Therefore, the sums in (3.21) can be calculated to yield the following equation for the
amplitudes:

−2

C1π
√
α

(
sin(πδj )√

j

) (√
h̄�3/2

k

)
Aj +

[
Aj+1

(1 − δj+1εj+1)2
+ Aj−1

(1 + δj−1εj−1)2

]
≈ 0. (3.26)

The one-dimensional tight-binding equation for the amplitudesAj now contains only
nearest-neighbour coupling. The diagonal potential is given by the pseudo-random function
sin(πδj ), damped by a factor of

√
j . The hopping terms are weakly dependent on position,

and tend to unity in the limitεj → 0. For the case of a truly random potential and strictly
constant hopping, the eigenstates are power localized with a power proportional to the square
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of the prefactor of the diagonal potential [42]. Numerical calculations for the model (3.26)
with σ = 1, provide evidence that these differences do not alter the qualitative conclusion
of the theorem (Brenner and Fishman [21] following de Oliveiraet al [16]). Thus, we may
conclude that the envelope of the wavefunction decays asymptotically with a power law as
a function of the QR numberj , and that this power scales as(h̄�3/k2). Therefore, there
is a critical valuekc of the external field, for which the power of the wavefunctions are
larger than(− 1

2) and consequently they are non-normalizable. This critical field depends on

parameters askc ∝ √
h̄�3, independent ofσ , with a prefactor which cannot be determined

from this calculation. This crossover was first found by Benvenutoet al [15] for the special
case of the bubble model,σ = 1, by using the classical impact mapping.

In conclusion, we have found in this section that for the positive power-law model
(3.1), one may characterize the wavefunctions of the Floquet operator by two scales which
include many QR’s: on a local scale a crossover is found from localized to more extended
behaviour as a function ofn. The point of crossover between the two regime scales as
nc ∝ (�2/k)(2+σ)/σ . In the longer range, i.e. in the asymptotic limitn → ∞, the behaviour
is found to be a power-law decay, with the power proportional to(h̄�3/k2), independent
of σ .

4. A model with a negative power potential

In this section, we consider a class of models similar to those discussed in the previous
section, but with a binding potential described by a negative power (thus having a singularity
at the origin). The driving is a harmonic electric field treated in the dipole approximation.
It will be convenient to work in a different gauge for this problem,

H(x, p) = 1

2m

[
p + k

�
cos(�t)

]2

− bxσ x > 0 (4.1)

where b > 0. We consider the region−2 < σ < 0, so that bound states exist in the
potential well [30]. The special case ofσ = −1 corresponds to the one-dimensional
potential of hydrogen like atoms. This is an approximation the three-dimensional motion
of a particle in a coulomb binding potential with high energy and small angular momentum
[3].

Similar to the previous section, we use action-angle variables of the unperturbed system;
in these variables and in appropriate units,

H = 1

α
Iα + k

�
p(I, θ) cos(�t). (4.2)

The powerα is related toσ by (3.3) and is in the interval(−∞, 0), so the bound part of
the spectrum is bounded from above byE = 0. We consider the dynamics of this system
only inside the bound part of the spectrum, i.e. we ignore transition into the continuum.
This is a good approximation for the dynamics if the initial condition is far enough from
the continuum, for time scales over which the system does not evolve to states too near the
continuum [25, 43].

The use of the SCCP for calculating the Floquet matrix elements, (2.5), is justified here
either as a leading order in the field strengthk, or as a leading order inε, as explained in
appendix C. The functionA(θ) is calculated in appendix A:

A(θ) =


0 0< θ < 2π(1 − ε)

C22πk

�η
sin

[
2π − θ

ε

]
2π(1 − ε) < θ < 2π

(4.3)
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whereη = (4 − σ)/(2 − σ). The Fourier components ofp decay asgm ∼ C2/m
2/2−σ (see

appendix D). This function has a similar structure to the one calculated in section 2, and
the reason for its form is similar: the effective energy transfer takes place in the vicinity of
the origin. In appendix E, we present an alternative way to calculate this function for the
case of the hydrogen atom. In this case the exact transformation to action angle variables
is used, and the result (4.3) is derived as the leading order in the asymptotic expansion in
ε → 0.

Using this function it is possible to proceed as explained in section 2, to find that
the eigenstates of the local linearized problem have the form of (2.20). In this case the
properties of thegm’s are such that

ϕ = π(µ− l)(1 − 2ε)− C2kε

h̄�η

B = C2πk

h̄�η sin(π/ε)
.

(4.4)

The location of the QR’s for the linearized model are given by (2.23). Since the energies
are negative and bounded by zero, there is a finite number of QR’s. Denoting byrmax the
maximal value ofr, the location of the QR’s is

Enr = h̄λ− h̄�rmax + h̄�r − δrh̄ω. (4.5)

The shifth̄�rmax was introduced in order to express the negative energiesEnr in terms of
the positive indexr. The sequence of detuningsδr is calculated as in the previous section,
to yield

δr = frac

{
1

h̄
[α(h̄λ− (rmax − r)h̄�)]1/α

}
. (4.6)

Recall that−∞ < 1/α < 0. By definition,(rmax−r) is always positive and it decreases
as r increases, therefore it is clear that the sequenceδr becomes more irregular for large
values ofr tending tormax . Figure 3 shows a typical sequence of detuningsδr for the
hydrogen atom, whereα = −2, and it is seen that indeed at larger values ofr the sequence
is more irregular. The straight lines connecting consecutive points at small values ofr

indicate that in this region the detunings behave quasiperiodically. We may estimate the

Figure 3. Typical sequence of neighbouring detuningsδr for the hydrogen atom (σ = −1). The
lines connecting consecutive elements at low values ofr indicate that the sequence is regular.
For larger values ofr it is more irregular.
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point at which the sequence becomes irregular to be the point where the difference between
the values of the terms in the curly brackets in (4.6) for neighbouring sequence elements
is of the order of 1. Using the approximationEnr ≈ h̄λ− h̄�(rmax − r), one finds that the
condition for this isε < 1.

We now turn to investigate the long-range characteristics of the eigenstates. The
condition for matching in this case, corresponding to (3.18)

k >

(
2 + σ

2 − σ

)
sin(π/ε)

C2π
�

σ
2−σ I

3σ−2
2+σ . (4.7)

For typical non-resonant values ofI , where sin(π/ε) is of the order of 1, this inequality
differs from Chirikov’s criterion for resonance overlap only by a constant. Therefore, the
matching procedure is valid where the Chirikov criterion is satisfied, namely in a classically
connected region of phase space. It is seen that sinceσ is negative, phase space is always
connected for large enough values ofI .

The equation for the amplitudes of the QR’s is constructed in the same way as in the
previous section. We start from the analogue of (3.21), with the coupling given by the
momentum operator:

−Arh̄δrωsin(πδr)

πδr
+ k

�

∑
n′

〈nr |p̂|n′〉[Ar+1Qr+1(n
′)+ Ar−1Qr−1(n

′)] ≈ 0. (4.8)

The matrix elements of the momentum operator are estimated semiclassically in appendix D,
and one may write the result as

〈nr |p̂|n′〉 ≈ iωC2h̄
2

2−σ
sgn(nr − n′)

|Enr − En′ | 2
2−σ
. (4.9)

Substituting this expression into the sum overn′ and using (3.23), one has for the first sum

k

�

∑
n′

〈nr |p̂|n′〉Qr+1(n
′) ≈ kiωC2

�η

∑
n′

Qr+1(n
′) sgn(nr − n′)

|1 − (nr+1 − n′)ε| 2
2−σ
. (4.10)

Expanding the denominator aroundn′ = nj+1 and summing according to appendix F, one
finds the following equation:(
h̄�η

πC2k

)
sin(πδr)Ar +

[
iAr+1

(1 − δr+1εr+1)
2

2−σ
+ −iAr−1

(1 + δr−1εr−1)
2

2−σ

]
≈ 0. (4.11)

For ε < 1, the first term, namely the diagonal potential, may be considered similar to a
random one. Neglecting the weak dependence of the hopping terms onr, and defining
Ãr = eiπr/2Ar , one obtains a one-dimensional Anderson model for the amplitudesÃr . The
eigenstates of this model have an absolute value which is exponentially localized with a
perturbative estimate for the localization length given by

ξ ∼ k2

h̄2�2η
. (4.12)

Figure 4 shows a numerical calculation of the localization length as the inverse Lyapunov
exponent corresponding to equation (4.11) for the case of the hydrogen atom in the region
ε < 1, using the transfer-matrix technique. It is seen that the estimate (4.12) agrees well
with the numerical result. In this caseη = 5

3, and the scaling of the localization length with
the field parameters is the same as that obtained from the Kepler map [25].

In conclusion, we have shown in this section that for the negative power-law model,
in the high-frequency regime (ε < 1) the equation for the amplitudes superimposed on
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Figure 4. Localization length for equation (4.11) withσ = −1 (the hydrogen atom), in the
regionε < 1. The calculation was performed using the transfer-matrix technique, and identifying
the inverse Lyapunov exponent withξ .

the peak structure is an Anderson-like tight-binding model. We have completely neglected
the effect of the continuum on the dynamics; this should be taken into account once the
localization length is large enough so that there is considerable probability to find the system
nearE = 0 [25].

5. Summary and discussion

In this paper, we considered the excitation of a quantum system with an adiabatically
nonlinear spectrum by a high-frequency field. This was done by investigating the properties
of the Floquet eigenstates, which are the stationary states of the time-dependent system.
These properties can be characterized according to the energy scale considered. The
properties found on a small energy scale are universal for this class of systems, while
the properties on a large energy scale are system specific.

On a small energy scale, the Floquet eigenstates were found to be composed of a ladder
of sharp peaks, the quasi-resonances QR’s. While their existence was already well known,
the details of their shape and width were revealed in the present work. It was found that
the QR’s have a universal shape of a sinc function, (2.24), independent of the driving-field
parameters and of the details of the system. This result was obtained by solving an exact
model, the linear kicked rotor, which approximates the system in a finite-energy regime.
The constant line-width can be simply related by uncertainty to the typical time for energy
transfer, which in these systems is not the field period, but the orbital period of the undriven
system. Thus the eigenstate can be described by (2.30) with the details of the sinc functions
predicted by (2.29).

The behaviour of the eigenstates over a large energy scale was obtained by constructing
an effective equation for the QR amplitudes. For this purpose, the universal properties of
the QR’s on small energy scales were used explicitly. For a monochromatic field, this turns
out to be a nearest-neighbour tight-binding equation in one dimension, whose parameters
can be directly related to the properties of the physical system. The diagonal potential is
related to the unperturbed spectrum, while the hopping terms are related to matrix elements
of the perturbation between neighbouring QR’s. If the matrix element of the interaction
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with the driving fieldÔ in the unperturbed basis can be written semiclassically in the form

〈n|Ô|n′〉 = V (nh̄)gn−n′ (5.1)

as in the case for the systems studied in the present work, then the most general form of
the tight-binding equation is

−h̄ω
π

sin(πδj )Aj + k

2
V (njh̄)

[
g̃

(
− 1

εj+1
+ δj+1

)
Aj+1 + g̃

(
1

εj−1
+ δj−1

)
Aj−1

]
≈ 0

(5.2)

whereg̃(x) is the extension of the discrete functiongm to a continuous variable. The index
j labels the QR number, which occurs at the unperturbed statenj . The amplitude at this
QR is denoted byAj , the detuning from exact resonance byδj and the local unperturbed
frequency isω.

We considered in detail the model of a particle in a potential well described by a power
law, V (x) ∼ xσ , driven by an electric field in the dipole approximation. For positive
powers, 0< σ < 2, the eigenstate has two qualitatively different regimes inn-space. In the
smalln regime it is exponentially localized, while for larger values ofn it is more extended,
with a power-law asymptotic decay. The crossover between the two regions takes place at
nc, satisfying

nc ∼ (�2/k)(2+σ)/σ . (5.3)

This is a generalization of a result previously found for the special case of the bubble model,
σ = 1 [21]. In the asymptotic regimen → ∞, the special case of (5.2) is similar to the
Anderson model in an electric field. The diagonal potential is a pseudorandom sequence
whose details depend onσ , but otherwise this equation—and thus the asymptotics of the
eigenstates—is independent ofσ . The eigenstates are found to be power-law decaying,

Aj ∼ 1/j (h̄�
3/k2). (5.4)

This implies the existence of a crossover field strengthkc ∼ √
h̄�3 beyond which the tails

of the eigenstates turn non-normalizable. A result of this general form was announced by de
Oliveira et al [16]. For the special case of the bubble model, this result was first obtained
by use of a Kepler-like map [15]. The reason that in this regime the result is independent
of σ is related to the fact that the asymptotic behaviour of the dipole matrix elements is
similar for all σ , which is a result of the triangle-like singularity that all these potentials
have at the origin.

For negative powers,−2 < σ < 0, the effective amplitude equation is similar to
the Anderson model on a finite lattice, due to the finite-energy regime of the bound
spectrum. However, only in the high-frequency regime,ω < �, is the diagonal potential
pseudorandom. In this regime the localization length is

ξ ∼ k2/h̄2�2η (5.5)

with η = (4−σ)/(2−σ). For the special case of the hydrogen atom,σ = −1, this reduces
to the scaling found from the Kepler map [25]. The singularity of the binding potential in
this region isσ -dependent, thus the asymptotic behaviour of matrix elements depends on
σ , leading to a dependence on the details of the amplitude equation and of the localization
length.

Equation (5.2) can be applied also to other systems with an adiabatically nonlinear
spectrum. For various systems and different driving forces, other tight-binding models may
be found. Since the behaviour is dominated by the form of the potential near the origin the
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results of this work are also applicable to other potentials as long as they behave likexσ

near the origin, while their behaviour in other regions may be quite different, provided it
is smooth. Note that the results follow from the large-m behaviour of Fourier elements of
the dynamical variables, which depend on the type of singularity of the binding potential
at the origin. The Fourier components which are important for our solutions are those with
index in the vicinity ofm ≈ 1/ε. A smoothing of the binding potential in a small region
will only change the behaviour of the Fourier components asymptotically; if this region is
small enough, then the change will be considerable only at Fourier components much higher
than 1/ε and therefore will not change our results.

In this paper several approximations were made which require some further justification.
These were supported by heuristic arguments outlined in the paper and comparison of the
results with exact numerical calculations for specific systems. The most important of these
is the matching procedure between various regions where the linearization holds. The
relation of its validity to the existence of extended chaos in the corresponding classical
system requires some further clarification. Another approximation is that in calculating
the Floquet operator, only the linear average change of the angle variable as a function of
time contributes. This is formally a leading order in the field strength, and for the models
considered in sections 3 and 4 it was shown to be also a leading order inε. For a general
system driven by a high-frequency field it requires further justification. These problems are
left for further studies.
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Appendix A. Approximate summation of resonant sums: calculation ofA(θ)

In this appendix we present an approximate way to calculate the functionA(θ) which
appears in the matrix elements of the Floquet operator (see (2.7), (2.12)). Inserting the
Fourier expansion ofg,

g(θ + ωt) =
∑
m

gmeim(θ+ωt) (A.1)

and performing the integral dt , one finds

A(I ; θ) = kV (I)

iω

∑
m6=0

mgm
ei2πεm − 1

(m2 − 1/ε2)
eimθ . (A.2)

If the coefficients,gm, are symmetric (as is the case if interaction is a function of position
x only),

A(I ; θ) = 2kV (I)

ω

{ ∞∑
m=1

mgm

(m2 − 1/ε2)
sin[m(θ + 2πε)] −

∞∑
m=1

mgm

(m2 − 1/ε2)
sin[m(θ)]

}
.

(A.3)
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If gm is a smooth function which does not decay too rapidly, then in the high frequency limit,
ε � 1, the sum is dominated by the termsm±. These are the terms with indices closest
in absolute value to 1/ε, so that the denominator in the sum of (2.18) is minimal. They
satisfym± ≈ ±1/ε which corresponds to local classical resonances� ≈ ±(m+ω). If gm is
too rapidly decreasing, the sum will have terms comparable to the resonant ones at small
values ofm. Denoting by1 the detuning from the classical resonance, (1 = 1/ε − m+),
the following condition on the decay ofgm should hold in order for the resonant terms to
be dominant:

gm+

g1
> 2ε21. (A.4)

The resonant terms appear at indicesm± of large absolute value and give two regions
of contribution to the sum which are well separated from each other. In ordinary ‘resonance
approximations’, the sum would be approximated by these two leading terms [28]. However,
we may use the smoothness ofgm in order to take into account correctly the contribution
of many terms around the resonant ones:

∞∑
m=1

mgm

(m2 − 1/ε2)
sin[mθ ] ≈ gm+

∞∑
m=1

m

(m2 − 1/ε2)
sin[mθ ] = gm+

π

2

sin[π − {θ}/ε]

sin[π/ε]
(A.5)

where {θ} denotes the residue ofθ modulo 2π . The last equality is a result of exact
summation. Substituting the approximation (A.5) in (A.3), one finds the result (2.8).
Figure A1 shows that the approximation of (A.5) is indeed a good one. Our approximation
is least good at the edges of the interval [0, 2π ], since there the values of cos(mθ) do not
oscillate very much as a function ofm, and a large contribution may be given by the tails.
At other values ofθ the cosines oscillate so that the main contribution to the sum indeed
comes from the close vicinity of the resonant term. The relative error between the absolute
values of exact calculation and our approximation is about 0.15.

For the positive power-law model with dipole driving presented in section 2, the
asymptotic behaviour of the coefficients isgm ∼ C1/m

2 (see appendix B). Since the resonant
sum is dominated by the vicinity ofm+ (that is large), we may use this asymptotic form to

Figure A1. The resonant series in equation (A.5) as a function ofθ . The exact sum of the LHS
(full curve), compared with the approximation RHS (full circles). In this example,gm = m−2/3.
For comparison, the dotted curve shows the contribution of the resonant termm+.
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calculate the sums more accurately. Using the formula
∞∑
m=1

sin(mθ)

m(m2 − 1/ε2)
= ε2

2
({θ} − π)+ π

ε2

2

sin[π − {θ}/ε]

sin[π/ε]
(A.6)

one finds the expression (3.9) forA.
For the negative power-law model presented in section 3, the coupling is linear inp.

Thus the coefficientsgm are antisymmetric and the analogue of (A.3) is

A(I ; θ) = 2kV (I)

ω�i

{ ∞∑
m=1

mgm

(m2 − 1/ε2)
cos[m(θ + 2πε)] −

∞∑
m=1

mgm

(m2 − 1/ε2)
cos[m(θ)]

}
.

(A.7)

It is shown in appendix D that the Fourier components ofp decay asg−m ∼ C−2/m2/2−σ ,
which is a power ofm between(−1) and(− 1

2). Therefore, the productmpm varies slowly
inside the sums of cosines, and one may write the approximation analogous to (A.5) for
this case:

∞∑
m=1

mgm

(m2 − 1/ε2)
cos[mθ ] ≈ m+gm+

∞∑
m=1

cos[mθ ]

(m2 − 1/ε2)
(A.8)

= m+gm+

[
ε2

2
− πε

2

cos[π − {θ}/ε]

sin[π/ε]

]
.

Using the asymptotic properties of the coefficientsgm andV (I) for the momentum, given
in appendix D, one finds the approximation (4.3) forA.

Appendix B. Matrix elements for σ > 0

In this appendix, the dipole matrix elements will be calculated semiclassically for the model
(3.1). In the semiclassical limit, the dipole-matrix element between states|n〉 and|m〉 is just
the (n − m) Fourier component of the variablex(I, θ). The relation to the angle variable
is:

θ(x, I ) = ∂S

∂I
= ∂E

∂I

∫ x m√
2m(E − byσ )

dy (B.1)

whereE = H0(I ). The functionx(I, θ) can be obtained by inverting this relation. Since
θ(x, I ) is defined in terms of the integral of a smooth function, it is differentiable with a
derivative

∂θ

∂x
= ∂E

∂I

m√
2m(E − bxσ )

. (B.2)

This derivative is non-vanishing at all points (since the potential is everywhere finite),
therefore the implicit equation may be inverted, for each branch of the square root. Note
that at the turning pointx0 defined byE = bxσ0 , this derivative diverges therefore the
derivative of the inverse functionx(I, θ) is zero. Thus if we define the angleθ to be
zero at the origin andπ at this turning point, thenx(I, θ) is a continuous function ofθ ,
symmetric with respect toπ , with a finite derivative everywhere which vanishes only at
θ = π . Sincex is always positive (the potential is defined on a half space), necessarily
the functionx(I, θ) has a discontinuous derivative at endpoints of the interval [0, 2π ]. The
functionx(I, θ) was calculated numerically for several values ofσ . Some results are shown
in figure A2. It is seen that the general form of the function is qualitative as described above.
For σ = 1 it is an inverted parabola, while forα = 2 it is proportional to sin(θ/2).
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Figure A2. The classical variablex(I, θ) for various values ofσ . For comparison, all graphs
are scaled so that at the turning pointx = 1.

These properties of the functionx(I, θ) imply that its Fourier series has elementsgm
which decay as 1/m2. If one is interested only in the high Fourier components, as we are
in this paper, the dependence ofx on the actionI can be obtained from calculating the
integral in the vicinity ofx = 0 (whereθ = 0 and the function is singular). In this region
the generating function can be approximated by a linear function,

S(x; I ) =
∫ x √

2m(E(I)− byσ dy ≈
√

2mE(I)x. (B.3)

Its derivative with respect toI is θ(x; I ) to first order inx, which can be inverted to give
x(I, θ) to first order inθ :

x(I, θ) ∝ I 2/(2+σ)θ. (B.4)

Now x(I, θ) can be approximated to be a function ofI multiplied by a function ofθ . In
this approximation (which reproduces correctly the high Fourier components) the position
variable is

x(I, θ) = I γ
∑
m

gm cosmθ (B.5)

with γ = 2/(2 + σ) and gm ∼ C1/m
2 for largem. The semiclassical matrix elements

satisfy:

〈n|x̂|m〉 ∝ (nh̄)γ

(n−m)2
. (B.6)

For the special case of the bubble model,σ = 1, one has (B.6) withγ = 2
3 which agrees

with the exact result in the limitn � 1.
The next term in the expansion aroundx = 0 in (B.3), gives

x(I, θ) ∼ I 2/(2+σ)(aθ − bθ1+σ ) (B.7)

wherea andb are constants. This shows that also in the next order in the expansion the
product form ofx(I, θ) is preserved. It leads to a correction to the Fourier components
in (B.5), gm ∼ C1/m

2 + C ′
1/m

2+σ , which renormalizes the functionA(I, θ) by a factor of
(1+ (C ′

1/C1)ε
σ ). Thus, the conclusions of section 2 remain qualitatively unchanged to the

next order inε.
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Appendix C. The SCCP as a high-frequency approximation

In this appendix, we show that for the two models discussed in sections 3 and 4, the
calculation of the Floquet operator using the SCCP is a leading order in the limitε → 0.

Consider the dimensionless equations of motion for the positive power-law model, (3.7),
(3.8). As explained in section 3, the first step in the time-scale separation is to solve the
equation forθ assuming thatε is constant. Forσ > 1, the leading-order solution is
θ = θ0 + ετ , therefore the SCCP is clearly a leading order inε. For σ < 1 the oscillatory
term in the equation is dominant in the limitε → 0. Here we consider the latter case, and
in the regime whereε � 1, we solve the equation forθ by self-consistent iterations.

For ε = 0 the solution is simplyθ = θ0. Inserting this back into the equation of motion,

dθ

dτ
= ε + ε

σ
2−σ F2(k,�)g(θ0) cos(τ ) (C.1)

which gives the solution

θ(τ ) = θ0 + ετ + ε
σ

2−σ F2(k,�)g(θ0) sin(τ ). (C.2)

The correction to the zeroth-iteration solution is of the order ofO(ε σ
2−σ ), and recall that

we are interested here in parameters for which 0< σ/(2 − σ) < 1. The linear term, that
is O(ε), is therefore subdominant; however, it is kept in the solution since the oscillatory
term has a vanishing contribution to the integral (2.6) forA(I, θ).

Iterating this solution back to the equations of motion, and expanding the functiong(θ)

aroundθ = θ0, the equation of motion reads

dθ

dτ
= ε + ε

σ
2−σ F2(k,�)g(θ0) cos(τ )+ ε

σ
2−σ +1F2(k,�)g

′(θ0)τ cos(τ )

+ε2 σ
2−σ F2(k,�)

2g(θ0)g
′(θ0) sinτ cosτ. (C.3)

The correction isO(ε2 σ
2−σ ), or O(ε σ

2−σ +1), depending on the value ofσ . In any case it is self-
consistent to take the first iterate (C.2) as the leading-order solution. Inserting this solution
into the integral definingA(I, θ), (2.6), where now the time dependence ofθ includes also
the oscillatory term, the integrand can be expanded around the linear partθ0 + ετ :

A(I, θ) = k

�

∫ 2π

0
V (I)g(θ0 + ετ) cosτ dτ

+ k

�

∫ 2π

0
V (I)g′(θ0 + ετ)ε

σ
2−σ F2(k,�)g(θ0) cosτ sinτ dτ. (C.4)

Expandingg′ aroundθ0, it is seen that the oscillatory term gives a vanishing contribution to
the integral, with a correction which is of higher order inε. One should therefore consider
whether higher-order terms in (C.3) give a non-vanishing contribution which cannot be
neglected compared to the term linear inε. Inspection of the form of the solution, (C.3),
reveals that those terms which cannot always be neglected compared to the linear term, for
example the terms which isO(ε2 σ

2−σ ), give a contribution to the integral ofA which is a
higher order inε (they vanish if the linear part of the argument ofg′ is neglected). It is
easily checked that this is also true for the next iterations, and therefore the leading order
in ε is consistently given by (2.7).

The dimensionless equations of motion for the case ofσ < 0 are

dε

dτ
= ε

σ−4
σ−2F3(k,�)

(
dg

dθ

)
cos(τ ) (C.5)

dθ

dτ
= ε + ε

2
2−σ F4(k,�)g(θ) cos(τ ). (C.6)
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Also in this case, the time variation ofε is slower than that ofθ , and the equation of
motion for θ can be solved first withε taken to be constant. Because of considerations
similar to those in the case discussed above, the oscillatory term is of lower order inε and
an iterative procedure can be self-consistently employed to give the leading order of the
solution. Equation (2.7) is therefore a leading order inε also for negative values ofσ .

Appendix D. Matrix elements for the σ < 0

In this appendix we calculate the semiclassical matrix elements of the position and
momentum variables for the model discussed in section 3. We use again the simplest
semiclassical estimate, namely the Fourier components of the functionsx(I, θ) andp(I, θ).
It will be shown that the type of singularity of the potential at the origin (related to the
value ofσ ), determines in a simple way the asymptotic behaviour of these matrix elements.

The unperturbed Hamiltonian is

H0(I ) = 1

α
Iα (D.1)

whereα is defined in (3.3). In this case−∞ < α < 0, and the energies are negative. The
function θ(x, I ) is derived from the generating functionS(x, I ), and forx � x0 (wherex0

is the turning point) it is approximated as follows:

θ(x, I ) = ∂S

∂I
= ∂E

∂I

∫ x m√
2m(E + byσ )

dy ∼ ω(I)

∫ x

y−σ/2 dy. (D.2)

Therefore, ignoring constants, we haveθ(x, I ) ∝ Iα−1x1−σ/2, or

x(I, θ) ∝ I γ θ
2

2−σ (D.3)

whereγ = 2/(2 + σ).
For the special case of the hydrogen atom, (σ = −1), x ∝ I 2θ2/3 which agrees with

the exact results forx � x0. The exact functionx(I, θ) is shown in figure A3 for various
values ofσ . The position variable has a cusp atθ = 0, where the function behaves as
θρ and its derivative diverges(ρ < 1). This point dominates the asymptotic behaviour of
the Fourier components, which decay asymptotically as 1/|m|ρ+1 [44]. Applying it to the
position variable in our model, it is found that the Fourier components decay with a power

Figure A3. Same as figure 6, for negative values ofσ .
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η = (4−σ)/(2−σ) as a function ofm. The semiclassical dipole-matrix elements therefore
behave as

〈n|x̂|m〉 ∝ (nh̄)γ

|n−m|η . (D.4)

For the case of the hydrogen atom,σ = −1, one finds that

〈n|x̂|m〉 ∝ (nh̄)2

|n−m|5/3 (D.5)

in agreement with the asymptotic behaviour of the exact matrix elements. Similar properties
can now easily be found forp(I, θ). At the originx ≈ 0,

p(I, θ) =
√

2m(E(I)+ bxσ ) ≈
√

2mbxσ/2 ∝ I
σ
σ+2 θ

σ
2−σ . (D.6)

Because the potential is(−∞) at the origin, the momentump always diverges there. The
variablep(I, θ) is antisymmetric with respect toθ = π , therefore the Fourier components
are pure imaginary. Thus the expansion coefficients of theθ dependent part ofp satisfy

gm ∼ iC2 sgn(n−m)/|m| 2
2−σ (D.7)

and the matrix elements of the momentum semiclassically are

〈n|p̂|m〉 ∼ iC2{sgn(n−m)
(nh̄)

σ
2+σ

|n−m| 2
2−σ
. (D.8)

For the hydrogen atom, this implies|〈n|p̂|m〉| ∝ n−1

|n−m|2/3 in agreement with the exact matrix
elements.

The next term in the expansion aroundx = 0 in (D.2), gives the correction to the
momentum variable (D.6) as

p(I, θ) ∼ I
σ
σ+2 (āθ

σ
2−σ + b̄θ

−σ
2−σ ) (D.9)

whereā and b̄ are constants. Similar to the case of positiveσ , this also shows that in the
next order in the expansion the product form ofp(I, θ) is preserved. It leads to a correction
to the Fourier components (D.7)gm ∼ C2/m

2/2−σ + C ′
2/m

2(1−σ)/2−σ , which renormalizes
the functionA(I, θ) by a factor of(1+(C ′

2/C2)ε
−2σ/2−σ ). Thus, the conclusions of section 3

remain qualitatively unchanged to the next order inε.

Appendix E. Stationary-phase calculation ofA(I; θ) for the hydrogen atom

In this appendix, we derive the approximate expression (4.3) for the functionA(I ; θ) for
the case of the hydrogen atom, in a different way. The reason for doing this is that the
approximation suggested in appendix A, although reasonable and confirmed by numerical
calculations, is not a controlled one. For the hydrogen atom exact expressions are known
for the transformation to action-angle variables; this enables us to calculate the leading order
in the asymptotic expansion of the integral (2.7), whereε is the small parameter.

The Hamiltonian is (4.1) withσ = −1. The transformation to action-angle variables is

x(I, θ) = 2I 2 sin2(ψ/2) (E.1)

p(I, θ) = 1

I
cot(ψ/2) (E.2)

θ = ψ − sinψ. (E.3)
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To first order in the field strengthk, one may use the approximation (2.5) for the Floquet
matrix elements. The perturbation is now expressed by coupling to the momentum operator,
therefore

A(θ) = k

�

∫ T

0
p(I ; θ + ωt) cos�t dt (E.4)

= kI 2

�

∫ ψ2

ψ1

cos[(ψ − sinψ − θ)/ε] sinψ dψ (E.5)

where the initial angleθ is constant and is related to the endpoints of the integral by
ψ1 − sinψ1 = θ , andψ2 − sinψ2 = θ + 2πε. The second expression holds, consistently,
to first order ink [25, 24]. It is convenient to consider the following integral

I =
∫ ψ2

ψ1

exp{i[(ψ − sinψ − θ)/ε]} sinψ dψ. (E.6)

The leading order to this integral comes from the stationary pointψ = 2π , if it is contained
inside the integration domain. The contribution of this point has been calculated by Casati
et al [25]. Taking only this part into account, one finds that

I ∼=


0 0< θ < 2π(1 − ε)

2π

i
(2ε)2/3 Ai ′(0)ei(2π−θ)/ε 2π(1 − ε) < θ < 2π

(E.7)

implying for A(θ) the following form:

A(θ) ∼=
{

0 θ < 2π(1 − ε)

R sin[(θ − 2π)/ε] θ > 2π(1 − ε)
(E.8)

whereR ∼= 0.82πk/�5/3 is a constant, independent ofI (or ε). The minus sign relative to
(4.3) is because for the hydrogen atomC2 < 0.

The region of parameters where this approximation is zero, is that where the stationary
point lies outside the interval of integration. The next-order contribution toI comes from the
endpoints. Expanding the phase around the endpointψ1 into the complex plane,ψ = ψ1+iζ ,
0 6 ζ 6 ∞, one finds the correction from the endpoints to beE(ψ1)− E(ψ2), where

E(ψ) = 1

2

eiψ [(1 − cosψ)/ε − 1] − e−iψ [(1 − cosψ)/ε + 1]

(1 − cosψ)2/ε2 − 1
. (E.9)

This correction holds if the endpoints of the interval are not too close to the stationary point.
For typical values ofψ1 andψ2, it can easily be seen that the real part of the endpoints
correction is of the order ofε2, whereas the imaginary part is of the order ofε. The resulting
contribution toA(θ) is of the order ofε4/3 which is small compared with (E.8).

Appendix F. A ‘delta like’ property of the ‘sinc’ function

In this appendix it is shown that for any functionF(M) which can be expanded in a Laurent
series, the following equation holds:

∞∑
M=−∞

F(M) sinc[π(M + δ)] = F(−δ). (F.1)

Consider first the case of an expansion with positive powers, a Taylor expansion:

F(M) =
∞∑
k=1

F (k)(0)

k!
Mk. (F.2)
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Changing the order of summation, one needs to evaluate infinite sums as in (F.1) with
powersMk. It is convenient to use the integral representation

sinc[π(M + δ)] = 1

2π

∫ π

−π
ei(M+δ)y dy. (F.3)

Then the sum may be written as
∞∑

M=−∞
sinc[π(M + δ)]Mk = (−i)k dk

dxk

{ ∑
M

1

2π

∫ π

−π
ei(M+δ)y dy eiMx

}
x=0

. (F.4)

The sum overM gives a periodic delta function,
∑
j δ(x + y − 2πj). Since x is an

arbitrarily small variable andy is in the interval [−π, π ], only one delta function remains,
corresponding toj = 0. Integrating dy one finds

∞∑
−∞

sinc[π(M + δ)]Mk = (−i)k
dk

dxk
{e−iδx}x=0 = (−δ)k. (F.5)

Therefore (F.1) follows for a function which has a Taylor expansion. Similarly for negative
powers, using integration instead of differentiation with respect tox, one finds that (F.1)
holds.
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